Indian Statistical Institute, Bangalore

M. Math. Second Year, First Semester Operator Theory

Mid-Semestral Examination Maximum marks: 100 Date : Sept. 29, 2010 Time: 3 hours

In the following the field for vector spaces and algebras is taken to be the field of complex numbers and σ denotes spectrum.

1. Obtain the spectral decomposition for following matrices, that is, write them as unitary conjugates of diagonal matrices and also write them as linear combinations of projections.

$$M = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}, N = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}.$$

[20]

- 2. Let X, Y be Banach spaces. Show that K(X, Y), the space of all compact operators from X to Y is a closed subspace of the space B(X, Y) of all bounded operators from X to Y. [15]
- 3. Let \mathcal{F} be the algebra of all matrices of the form:

$$\left[\begin{array}{rrr}a&b\\0&a\end{array}\right]$$

with complex numbers a, b. Show that \mathcal{F} with

$$\| \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \| = |a| + |b|$$

is a commutative Banach algebra (You must verify all the axioms). Compute the spectrum of this Banach algebra. [15]

4. Let \mathcal{A} be a unital Banach algebra. Consider a, b in \mathcal{A} .

(i) Show that if (1-ba) is invertible then so is (1-ab). (Hint: If $c = (1-ba)^{-1}$, then $(1-ab)^{-1} = 1 + acb$).

(ii) Show that
$$\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}.$$
 [15]

5. Let $\mathcal{E} = C[0, 1]$ be the Banach algebra of complex valued continuous functions on [0, 1]. Let I be the ideal, $I = \{f : f \in \mathcal{E}, f(0) = f(1) = 0\}$. Show that the quotient space \mathcal{E}/I is isomorphic to \mathbb{C}^2 . [15]

[P.T.O.]

- 6. Let \mathcal{A} be a unital commutative Banach algebra. Define the Gelfand map for \mathcal{A} and show that the Gelfand map is a contractive homomorphism. [20]
- 7. Consider the set up of question 4. Suppose $\lambda . 1 = ab ba$, where λ is a scalar, show that $\lambda = 0$. (Hint: If $\lambda \neq 0$, arrive at a contradiction with 4(ii) by considering $\sigma(ab)$ and $\sigma(ba)$.) [10]